fable A motivational learning system www.shaperobotics.com | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |-------------------------|------------------|---|---| | F1
Throwing
Robot | 5-6 (Yrs
6-7) | This will also link with the Science and Maths curriculum. | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--|------------------|---|---| | F2
Parabolas | 9 (Yr 10) | This will also link with the Science and Maths curriculum. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; KS4 develop and apply their analytic, problem-solving, design, and computational thinking skills | | F3
The Pulling
Force of
Fable | 7-8 (Yrs
8-9) | The pupil can program using block structured programming. The pupil can use debug their programming. The pupil can optimise and correct their programming using logic reasoning. This will also link with the Science and Maths curriculum. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|-------------------|---|---| | F4
Solar panel | 8-9 (Yrs
9-10) | This will also link to the Science curriculum. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; KS4 design, use and evaluate develop and apply their analytic, problemsolving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|-------------------|---|---| | F5 Wind power | 8-9 (Yrs
9-10) | This will also link to the Science curriculum. The student is able to program using block programming. The student is able to create repetitions and check for defects (debugging) in the program. The student can use logical reasoning to optimize and correct coding. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; KS4 develop and apply their analytic, problem-solving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|-------------------
---|---| | F6
Pythagoras | 8-9 (Yrs
9-10) | This will also link to the Maths curriculum. The pupil should be able to create simple programs using block structured programming. The pupil should be able to program repetition and do debugging. The pupil should be able to use logic reasoning to optimise and correct the programming. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; design and develop modular programs that use procedures or functions KS4 develop and apply their analytic, problem-solving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|------------------|--|--| | F7
Geometry | 3 (Yr 4) | This will also link to the Maths curriculum. Level 1: The pupils can translate a geometric shape into a programming sequence. Level 2: The pupils can create a shape to scale in accordance with a scalable programming sequence Level 3: The pupils can refine their programming sequence, so that they, via programming, can transform their geometric shape. | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |---|------------------|---|--| | F8 Converting and reading speed and distance | 7-8 (yrs
8-9) | This will also link to the Maths and Science curriculum. Also to the Design and Technology curriculum if a 3D printer is used. The pupils have a knowledge of methods for measuring and designing in select programs. The pupils have a knowledge of the relation between the engine power of the robot and the circumference of the wheel, to determine to speed of the robot. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; | | F9 The significance of technology for people's health and living conditions | 7-9 (8-9) | This has several cross curricular links. The pupil can create sequential programs, that can accomplish simple objectives. The pupil understands that programs are executed by following simple, exact, and precise instructions. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--------------------------------|-------------------|---|--| | F10
Welfare
technology | 8-9 (yrs
9-10) | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem | | F11
Building a
pet robot | 2-4 (yrs
3-4) | | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--|------------------|---|---| | F12
Theme -
Fable on
vacation | 3-4 (Yrs
4-5) | | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs
 | F13
Triangles | 4-6 (Yrs
5-6) | This will also link to the
Maths curriculum | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |-----------------------------|------------------|---|--| | F14
Areas and
squares | 4-5 (Yrs
5-6) | This will also link to the
Maths curriculum | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | F15 Perimeters and squares | | This will also link to the
Maths curriculum | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--------------------------------|------------------|---|--| | F16
Intro to
programming | Yrs 3-4 | | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | F17
Novel
engineering | Yrs 5-9 | | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |-----------------------------|------------------|---|--| | F17
Novel
engineering | | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|------------------|---|--| | F18 Humans and Robots | 4-9 (Yrs 5 to 9) | | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--|----------------------------|---|---| | F19
Build an
obstacle
course | 6 (7) | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking use logical reasoning to compare the utility of alternative algorithms for the same problem design and develop modular programs that use procedures or functions | | F20
Robotic
research of
speed and
circular
motion | High
School
(Yr 10+) | This links to the Maths
and Physics curriculums | KS4 develop and apply their
analytic,
problem-solving, design, and
computational thinking skills | | F38
Welding
robot | Yrs 10+ | | KS4 - develop and apply their analytic, problem-solving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|------------------|---|--| | F39
Morse | 4-5 (Yrs
5-6) | | design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |---|------------------|---|---| | F40
Automation
in the
industry | Yr 9+ | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; understand how numbers can be represented in binary, and be able to carry out simple operations on binary numbers [for example, binary addition, and conversion between binary and decimal] KS4 develop and apply their analytic, problem-solving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|-------------------|---|---| | F43 Penalty kick | 8-9 (Yrs
9-10) | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; KS4 develop and apply their analytic, problem-solving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|------------------|---|--| | F44
Control fable | 5 (Yr 6) | | design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--|------------------|---|---| | F45
Social and
throwing
robot | Yrs 5-9 | This will also link with the Science and Maths curriculum. | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |---------------------------------|------------------
--|---| | F46
Fable nods | 4-6 (Yrs
5&6) | | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | F47
Flexible
throwing arm | Yr 12/13 | The curriculum for Physics A level states: "IT and digital resources must be included in all aspects of teaching and support students' learning, e.g. through information seeking, modelling, simulation, control, and visualization." | Dependant on A Level Specification being followed. The UK has several examination boards each with there own specification. | | F48
Convergence | Yrs
10-13 | | KS4 develop and apply their analytic,
problem-solving, design, and
computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |---|------------------|---|---| | F55
Mathematical
introduction
to Fable | Yrs 7-9 | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems use logical reasoning to compare the utility of alternative algorithms for the same problem design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; | | F56
A Trip to
Mars | Yrs 5-9 | | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs use repetition in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--------------------------|------------------|---|---| | F56
A Trip to
Mars | Yrs 5-9 | | design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |---|------------------|---|--| | F57
The good
robots | 3-6 (4-7) | The pupil can create sequential programs, that can accomplish simple objectives. The pupil understands that programs are executed by following simple, exact, and precise instructions. | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | F58
Health
technology
in everyday
lives | 7-9 (8-9) | The pupil can create sequential programs, that can accomplish simple objectives. The pupil understands that programs are executed by following simple, exact, and precise instructions. | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems; solve problems by decomposing them into smaller parts use sequence in programs; work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--|------------------|---|---| | F59
Plastic
production
and UN's
Global goals | 8-9 (9) | The pupil can create sequential programs, that can accomplish simple objectives. The pupil understands that programs are executed by following simple, exact, and precise instructions. | design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |-----------------------------|------------------|---|--| |
F60
Project
smarthome | Yr 5+ | Differentiation by outcome so any age student could complete this task with different level of complexity in their final product. | KS2 design, write and debug programs that accomplish specific goals controlling or simulating physical systems solve problems by decomposing them into smaller parts use sequence in programs use selection in programs work with variables work with various forms of input and output use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |-----------------------------|------------------|---|--| | F60
Project
smarthome | Yr 5+ | Differentiation by outcome so any age student could complete this task with different level of complexity in their final product. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------------|------------------|--|---| | F61 Mission entrepreneurship | Yr 10+ | The impact of technology and automatisation on society, including an understanding for safety, ethics and consequence of digital technologies. Computational thinking as an area of learning, including basic knowledge of network, algorithms, programming, logic and algorithmic thinking, abstraction and pattern recognition, data modeling, as well as testing. Iterative design process in an interaction between understanding the world, which the designs are for and the digital technologies, that is a part of the design process Complex task solving, where the children through understanding of design processes create new solutions with digital technologies and learn to argue for their relevance | KS4 - develop and apply their analytic, problem-solving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--------------------------------------|--------------------------|---|---| | F62 Informatics: Project with robots | High
School
(9-11) | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; understand how numbers can be represented in binary, and be able to carry out simple operations on binary numbers [for example, binary addition, and conversion KS4 develop and apply their analytic, problem-solving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |------------------------|--------------------------|---|---| | F63 Fable points north | High
School
(9-11) | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; understand how numbers can be represented in binary, and be able to carry out simple operations on binary numbers [for example, binary addition, and conversion between binary and decimal] KS4 develop and apply their analytic, problem-solving, design, and computational thinking skills | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |--|------------------|---
--| | F64
Cross-
curriular
project
about light | 7-8 (Yrs
7-9) | This also links with the Science curriculum. | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems understand several key algorithms that reflect computational thinking [for example, ones for sorting and searching]; use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; make appropriate use of data structures [for example, lists, tables or arrays]; design and develop modular programs that use procedures or functions understand simple Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and programming; understand how numbers can be represented in binary, and be able to carry out simple operations on binary numbers [for example, binary addition, and conversion between binary and decimal] | | Lesson
Title Grades | UK
equivalent | Computing concepts
covered (according to
Shape Robotics lesson
plans | National curriculum links | |---------------------------|--------------------------|---|---| | F65
GPS
coordinates | Not
specified
(9+) | | KS3 design, use and evaluate computational abstractions that model the state and behaviour of real-world problems and physical systems use logical reasoning to compare the utility of alternative algorithms for the same problem use two or more programming languages, at least one of which is textual, to solve a variety of computational problems; KS4 develop and apply their analytic, problem-solving, design, and computational thinking skills | ## Contact Shape Robotics Rugmarken 18 3520 Farum, Denmark Telephone: +45 26 35 25 69 There is much more at our website: www.shaperobotics.com